(परीक्षार्थी द्वारा स्वयं भरा जाना चाहिये)

Candidate's Roil No. In English

(In Words) \qquad

परीक्षार्थी का नामांक हिन्दी में
शब्दों में \qquad

नोट :- परीक्षार्थी उपरोक्त के अतिरिक्त उत्तर पुस्तिका के अन्य किसी भी भाग में अपना नामांक नहीं लिखें।

माध्यम …

विषय भौ हिन्दी \square अंग्रेजी \square
विज्ञान
परीक्षा का दिन सोमवार
दिनांक 11-3-19 \qquad
नोट :- परीक्षार्थी के लिए आवश्यक निर्देश इस पृष्ठ के पिछले भाग पर उल्लेखित हैं। जिन्हें सावधानी पूर्वक पढ़ लें व पालना अवश्य करें।

परीक्षक हेतु निर्देश :- (1) परीक्षक को उपरोक्त सारणी अनुसार प्राप्तांक भरना अनिवार्य हैं, अन्यथा नियमानुसार दंडित किया जायेगा।
(2) परीक्षक उत्तर पुस्तिका के अन्दर के पृष्ठों के बायीं ओर निर्धारित कॉलम में लाल इंक से अंक प्रदत्त करें।
(3) कुल योग भिन्न में प्राप्त होने पर उसे पूर्णाक में ही परिवर्तित कर अंकित करें (उदारणार्थ : $151 / 4$ को $16,171 / 2$ को $18,193 / 4$ को 20)

प्रश्नवार प्राप्तांकों की सारणी

प्रश्नों की क्रम संख्या	प्राप्तांक	प्रश्नों की क्रम संख्या	प्राप्तांक
1		19	
2		20	
3		21	
4		22	
5		23	
6		24	
7		25	
8		26	
9		27	
10		28	
11		29	
12		30	
13		31	
14		योग	
15		$\begin{array}{\|l\|} \text { प्राप्त अंकों } \\ \text { Rour } \end{array}$	$\begin{aligned} & \text { कुल योग } \\ & \text { (off) } \end{aligned}$
16		अंकों में	शब्दों में
17			
18			

परीक्षक के हस्ताक्षद्र \square
.संकेतांक
प्रमाणित किया जाता है कि इस उत्तर पुस्तिका के निर्माण में 58 जी एस.एम. क्रीमवोव कागज ही उपयोग में लिया गया है।165/2019

परीक्षार्थियों के लिए आवश्यक निर्देश

1. समस्त प्रश्नों का हल निर्धारित शब्द सीमा में इसी उत्तर पुस्तिका में करना है। विशेष परिस्थिति में अतिरिक्त उत्तर पुस्तिका पृथक से उत्तर पुस्तिका भरी हुई होने पर पर्यवेक्षक एवं वीक्षक की अनुशषां पर ही उपलब्ध कराई जायेगी
2. प्रश्न-पत्र पर निर्धारित स्थान पर अपना नामांक लिखें।
3. प्रश्न-पत्र हल करने के पश्चात् जिस पृष्ठ पर हल समाप्त होता है, उस पर अन्त में "समाप्त" लिखकर अन्त के सभी रिक्त पृष्ठों को तिरछी लाइन से काटें।
4. निम्न बातों का विशेष ध्यान रखें अन्यथा अनुचित साधनों की रोकथाम अधिनियम के तहत कार्यवाही की जा सकेगी।
(i) उत्तर पुस्तिका के ऊपर/अन्दर तथा प्रश्नोत्तर के किसी भी भाग में चाही गई सूचना के अलावा अपना नामांक नाम, पता, फोन नम्बर अथवा पहचान की कोई अन्य प्रकार की सूचना आदि अंकित नहीं करें अन्यथा "अनुचित साधनों के प्रयोग" के अन्तर्गत कार्यवाही की जावेगी।
(ii) उत्तर पुस्तिका के पृष्ठों को फाड़ें नहीं। उत्तर-पुस्तिका के मुख पृष्ठ पर अंकित संख्या के अनुसार पृष्ठ पूरे होने चाहिये। परीक्षार्थी उत्तरपुस्तिका प्राप्त करते ही पृष्ठ संख्या की जांच कर लें यदि पृष्ठ कम/अधिक या क्रम में नहीं हैं तो वीक्षक से तुरन्त ब्रदलवा लें।
(iii) परीक्षा केन्द्रों पर पुस्तक, लेख, कागज, केलक्यूलेटर, मोबाईल, पेजर आदि किसी भी प्रकार का इलेक्ट्रोनिक उपकरण तथा किसी भी प्रकार का हथियार आदि ले जाना निषेध हैं।
(iv) वस्त्र, स्केल, ज्योमेट्री बॉक्स पर कुछ न लिखकर लावें। टेबुल के आस-पास कोई अवैध सामग्री नहीं होनी चाहिये, इसकी जांच कर लें।
(v) अपनी उत्तर पुस्तिका/ग्राफ/मानचित्र आदि परीक्षा भवन से बाहर ले जाना दण्डनीय अपराध है, अतः परीक्षा
समाप्ति पर उत्तर पुस्तिका वीक्षक को समाप्ति पर उत्तर पुस्तिका वीक्षक को बिना सौंपे परीक्षा कक्ष नहीं छोड़ें।
5. उत्तरों को क्रमानुसार एक ही स्थान पर लिखें। प्रश्न क्रमांक भी सही अंकित करें, अन्यथा दण्ड स्वरूप परीक्षक को
6. जहाँ तक हो सके प्रश्न के सभी भाग के उत्तर. उत्तर पुस्तिका में एक ही स्थान पर अंकित करें।
7. भाषा विषयों को छोड़कर शेष सभी विषयों के प्रश्न-पत्र हिन्दी-अंग्रेजी दोनों भाषा में मुद्रित है। किसी भी प्रकार की त्रुटि/अन्तर / विरोधाभास होने पर हिन्दी भाषा के प्रश्न को ही सही माना जाये।

Ans (i.)

$$
\begin{aligned}
& Q=10^{-\theta} c \\
& d=1 \mathrm{~m}
\end{aligned}
$$

विद्युता विमव $V=\frac{1}{4 \pi t o r}$

Ang(2)

$$
.22 \times 10^{5} \Omega \pm 5 \%
$$

प्रथम वलय A करंग = लाल रेग

Ans(3) चुम्बकीय क्षैत्र मे धाराबाही चालक क्पर बल $F=I(\vec{J} \times \vec{B})$
Ans(1) नमन कोण: जब किसी चुम्बर्वाय सुई को एवांषताप्रक्रक लटकाई जाती है तो चुब्बराय अक्ष क्षेतिज के साय जो कोण बनाती है, उसे बमन कोण काे है। पृथ्वी के चुम्बकीय घ्युवों पर नमन कोण का मान 90° होता है।
An (5) प्रत्यावर्ती धारा के वर्गमाध्य मूल मान व शिखर मान में सेबंध

$$
I_{r m s}=\frac{I_{0}}{\sqrt{2}}
$$

An(6.

$$
\begin{aligned}
R & =10 \Omega \\
x_{L} & =100 \Omega \\
x_{C} & =100 \Omega \\
\text { प्रतिबाधा } z & =\sqrt{R^{2}+\left(x_{L}-x_{C}\right)^{2}} \\
z & =\sqrt{(10)^{2}+(100-100)^{2}} \\
z & =\sqrt{100} \\
z & =10 \Omega
\end{aligned}
$$

An(7) लौस की क्षमता (P) व कोकस दूरी दूरी मेंसेखंध-

$$
p=\frac{1}{f} \text { डायोकर }
$$

QQm.8. देहली आवृतिन आवतित विकिरण की वह न्यूकतम आवृर्षि जिससे किसी काने इलेक्ट्रॉन को इडकी चालक की साह से मुक्ला कराने के लिए आवश्यक होगी है।

- 嶅 (97)

इलेक्टॉगन

Ans(0.) कोई इलेग्ट्रॉंन अच्च दर्जा सिर $h_{2}=2,3 \ldots$ से मृल उर्जा $n_{1}=1$ मे सेंक्रमणन काता हैंोो प्राप्त हाड्रेजा सेक्रम की सोणी लाइमनश्रणी है।
Ans(i1)

आता यहाँ y बा नान 1 होगा
An=(12) गोडूलनः वह प्रवृ्विया जिसमे कम आवाति और अधित सरोलैध्य की मिंगो पर बाहक संखे का अध्यावेफफित करके उनको मल संकात है अधिक द्री पर भेषा जा सके, इस पक्षक्रां को मोइूलन कहोत है।
 (31.) कोण $=90$ होता है।
(ब.) कलानार $=0^{\circ}$ होता है।
 व्द्युता बिद्नुव आधर्ण और हबके मध्यकी दूरी के गुणनकल को

$$
p=2 q l
$$

(ब) समविमवपृष्ठः विद्युत क्षैष मे ख्थित वह पृष्ठ जिस पर विद्धुत विक्मव का

पृष्ठ काहो है।
An (15.)

दहिट्टोम होता सनुलन अवस्था मे

$$
\begin{equation*}
\frac{p}{Q}=\frac{R}{s} \tag{1}
\end{equation*}
$$

बिनुद्मव वे के माध्य

$$
P=20 \Omega, \theta=10 \Omega, s=1 \Omega
$$

$$
\frac{1}{R_{P}}=\frac{1}{6}+\frac{1}{R}
$$

$$
\frac{1}{R_{p}}=\frac{R+6}{6 R}
$$

समीकण (1) से

$$
R_{P}=\frac{6 R}{R+6}
$$

$$
\begin{aligned}
& \frac{2 \sigma}{10}=\frac{\frac{6 R}{R+6}}{1} \\
& 2=\frac{6 R}{R+6} \\
& 2 R+12=6 R \\
& 12=6 R-2 R \\
& 12=4 R \\
& R=3 \Omega
\end{aligned}
$$

An(18) (3.) क्यूरी तापः बह ताप जिसके नीचे पदार्थ लौध्युग्वकीय और उपर अनुचुण्बकीय पार्व हो, उसे क्यूरी ताप कहो है।
(ब.)

$$
\begin{aligned}
& l=0.1 \mathrm{~m} \\
& m=40 \mathrm{~A} \times \mathrm{m}
\end{aligned}
$$

चुम्बकीय आघूर्ण $m=m \times L$

$$
\begin{aligned}
& m=4 \phi \times \frac{00}{10} \\
& m=4 \mathrm{Axm}^{2}
\end{aligned}
$$

An (17) लौंज का विशः विद्युानुम्बकीय प्रेरण की प्रत्येक उवस्था मे होरित विद्यात धारा की दिशा सस प्रकार बोती है कि वह
उस काण का विरोध क्राती है। जिसके करण सकी उत्पीी हुई हैं उस काएण का विरोध करती है जिसके कारण उसकी उत्पाती हुई हैं इसे लैज का ⿵ियम कहो है।

लैज कांिियम दर्पसिस्षण किसम काफलन जब किसी चुम्बक के उनरी दा्षेणी घ्रुव की पाह व्यवहार करुव करे तो कमीप कुण्डली कुमीक्बक को
अपनी उपनी और आकर्षित कर होती है। इस प्राक़यया कुण्डली के समीप चुम्बकी बिना उर्जा खर्व किये हो आ जाता है। इस
स्थिाति मे ऊर्जा स्वितात मे ऊर्जा उस्सार्जी होती है।

An(18.) (अ) पूर्ण आनारिक परावर्तान जब विस्ले माध्यम मे आपास्या कोण का मान कोलिक कोण से अधिक हो जाता है तो प्रकाश की किए पुण! उसी माध्यम में वापस लोट जाती है पो इस घटना को पूर्ण अनारिक पावान तहो है।
(ब.) प्रकाश का विवतनि विमिण्न अवरोधो से बे बनने वाली प्रवाश की द्षाया पूणनि: स्पस्ट कप से दिखाई नही दोीी है। यह अवरोध के विबारि से मड़कर ज्यामिति द्यया मे प्रवेश कर जाती है, इस घरजा का प्रकाश विवतन कहते है।
An (19.) (3). मैलम नियम का सूतन

$$
I=I_{0} \cos ^{2} \theta
$$

(ब)

$$
i_{p}=\theta=60^{\circ}
$$

बाद्यर का नियम $\mu=$ tancip

$$
\begin{aligned}
& \mu=\tan 60^{\circ} \\
& \mu=\sqrt{3}
\end{aligned}
$$

अपवर्तन कोण (r)

$$
\begin{aligned}
& 60+\gamma=90 \\
& \gamma=9060 \\
& \gamma=30^{\circ}
\end{aligned}
$$

अपवर्तन कोण (अ) $=30^{\circ}$

Ans 20.

$$
\begin{aligned}
& V=100 \mathrm{~V} \\
& \text { इलेक्ट्रॉन का सरुमदद्र्य } \lambda=\frac{12.27}{\sqrt{V}} \mathrm{~A}^{\circ} \\
& \lambda=\frac{12.27}{\sqrt{100}} \mathrm{~A}^{\circ} \\
& \lambda=\frac{12.27}{10} \mathrm{~A}^{\circ} \\
& \lambda
\end{aligned}
$$

And210

वर्वप्रवम घम प्राथामिक का पर्ण करते है और कुजजी सका बंद करा है। कुजी k_{2} का खुला रखोो है। इस स्थिति में है खले परिषषण मे होता है। और घम इसके लिए सबुलित लबाई ज्ञात क्यां है। माणा है के

संतुलित लेबाई l_{1} है तो
$\varepsilon \varepsilon_{1} \propto$

$$
\varepsilon_{1}=x_{1}, \quad \text { (b) }
$$

अंब कुंजी K_{2} को मी बदद करो है और प्रतिसेय बॉक्स से इक्धि?
 तोइाकें लिए संजुलित लब्वाई 12 हो ोो -

$$
\begin{equation*}
v=x d_{2} \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
\text { आवारक प्रासिघघ झ्ञार कसे का स्यr } r\left(\frac{t-V}{V}\right) \times R \\
r=\left(\frac{x l_{1}-x l_{2}}{x l_{2}}\right) \times R \\
r=\left(\frac{l_{1}-l_{2}}{l_{2}}\right) \times R \tag{3}
\end{gather*}
$$

अतः हान समीकरण (उसे किसी मी सेल का आनकरि वृतीयेय ज्ञात वर सकाते है।
An(22.) नीस्स बोर की दो अमिमाहि: नील्न बोर की अविमाहि लिम-
i) इलेक्ट्रॉन कुछ निखित लिखिए है। काओ के ही चक्कर लगाो

है। चक्कर लगाओे हुए इलेक्टने चिबी पक्रार की कोई विकिरण उर्जा उत्सापित बही करो है।

कक्षाओ मे वर्रित्यर लगाते है। जिनके कोणीय संवेग कामन $\frac{h}{2 \pi}$ के
प्रनुणण के बराबर होग है। प्रत्वतुणाण के बराबर होता है।

$$
m v_{n} \gamma_{n}=\frac{n h}{2 \pi}
$$

An23. (3.) ाही अशुद्वि: गौलिय (जव)
(ब.) जेनर उयोड का प्रातिक:

Ans(24)

$$
\begin{aligned}
& \text { विद्युत क्षेत्र है कापरमाण }=300 \frac{\mathrm{~V}}{\mathrm{~m}} \\
& \text { चुम्बकीय कौव } \vec{B}=\text { ? } \\
& \text { प्रकाशका दोग(द) }=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { हम जानोते हैंकि } c=\frac{|\vec{E}|}{|\vec{B}|} \\
& |\vec{B}|=\frac{|\vec{E}|}{c}
\end{aligned}
$$

$$
\begin{aligned}
& |\vec{B}|=\frac{300}{3 \times 10^{8}} \\
& |\vec{B}|=\frac{3 \times 10^{2}}{3 \times 10^{8}} \\
& |\vec{B}|=10^{2-8} \\
& |\vec{B}|=10^{-6} \mathrm{~T}
\end{aligned}
$$

Am(25.) रदरफोई -्पोठी का रेड्योटार्खि क्ष्य कानियमः इस जियमाणुसार" "किली के विबतन की दर सम समय समय साक्रिय परमाणु की सेख्या के समानपाती होती है। उपस्थित कुल समिय परमाणु

$$
-\frac{d N}{d t} \propto N_{0}
$$

भाना किसी लसम्न कुल सक्रिय परमाणु की सेख्या N_{0} हो तो $d t$ समय मे $d N$ प्रमाणु का विघटत होता है तो -

$$
\begin{aligned}
& -\frac{d N}{d t} \propto N \\
& -\frac{d N}{d t}=\lambda N_{0}
\end{aligned}
$$

$$
\text { यदि } \quad-\frac{d N}{N}=\lambda d t
$$

यदि परमाणुओ की संख्या N से N_{0} हो तो

$$
\begin{aligned}
& -\int_{N_{0}}^{N_{0}} \frac{d N}{N}=\int \lambda d t \\
& {\left[\left.\log N\right|_{N_{0}} ^{N_{0}}=-\lambda t\right.} \\
& \log \frac{N_{0}}{N_{0}}=-\lambda t
\end{aligned}
$$

दोनो एरक ant \log लेने पर

$$
\begin{aligned}
& \frac{N_{0}}{N_{0}}=e^{-\lambda t} \\
& N_{0}=N_{0} e^{-\lambda t} \\
& N=N_{0} e^{-\lambda t}
\end{aligned}
$$

रीझियोणक्तव जल्व का प्रय वक्र:-

$$
\lambda=\frac{1}{t}
$$

रेडियोएक्सि सल की अर्द्वआयु एवस्ट माध्य अयुका अनुपात :०

$$
\text { अर्द्वआयुकाल } T_{4}=\frac{0.693}{\lambda}-(1)
$$

माध्य आयु $J=\frac{1}{T_{0}}$

$$
\begin{gather*}
T=\frac{1}{J} \tag{2}\\
\frac{0.693}{\lambda}=\frac{1}{J}
\end{gather*}
$$

$$
\frac{0.693}{1}=\frac{\lambda}{J}
$$

$$
\frac{0.693}{1}=\frac{\frac{0.693}{T}}{T}
$$

$$
0.663=\frac{0.603}{T J}
$$

$$
I 5=1
$$

Hमीकरण (1) मे (2) का भाग दोनेर

$$
\begin{aligned}
\frac{T}{T} & =\frac{0.693}{\frac{\lambda}{\frac{1}{T}}} \\
\frac{T}{J} & =\frac{0.693}{\lambda} \times \frac{T}{1} \\
\frac{T}{T} & =\frac{0.693 T}{\lambda}
\end{aligned}
$$

Pn (26) PNP ट्रोपिस्टर उन्मयानिष उत्मर्जक पिन्याप:

PNP व्रोजिएट मे उअनिष्ठ उस्मर्जक पिन्यात है। इसमे $E B$ संधि को अवअभ्भनतति मे बैदरी $V_{E E}$ से जोड़ा गया है और इसको समानार क्रम मे एक प्रतिरोध पोड़ गया है जो बौल्टता। $V_{B E}$ का मापाता है औरझी
 है।
विम्ता आमिलाक्षणिक वृकः उसयनिष्ठ उत्पर्णक विव्यास मे बिपेषी धारा को निया रखकर निर्जा वोल्ल्ता के
 कहलाता है।

उपयुक्त निर्वात अभिलाक्षाणिक बक्र मे $7 B=0$ पर $V E E$ के अश्रण्)
गतांतो पर Ic का मान की गून्य नही होगा है इसमे कहके
 के कारण प्रवाहित है। इसेे $V_{C E}$ और $I B$ के मब्य के क्षेति को स्षसाष्घ क्षेत्र कहो है।
इस प्रत्रतया मे $I C$ का मान $\mp B$ से अधिक होता है। श़ इस प्रक्रिया इस अयनक्ठ उसपर्जक विन्याज का उपयोग प्वर्वने
मे किया जाता है। उययुक में से आधारा धारा प्रवर्धर मुणाड $\alpha-0.9$

En 27. $L C R प र ि प व$:

उवयुका परिपण मे प्रत्यावर्ती वोल्टा कोषोत से $V_{R, L}$ और C तीनी स्रेणी क्रम मे ज़ु़ हुए है।
हम जानो है कि $V_{R}=I R, V_{L}=I X_{L}$ और $V=I K_{C}$ विभबोर उपष्प होता है।

परिपप मे RVL लगाने पर

$$
\begin{equation*}
V-V_{\text {LRC }}=0 \tag{1}
\end{equation*}
$$

हम जाबतो है कि

$$
\begin{align*}
& V_{R}=V_{0} \sin \omega t \tag{2}\\
& I=I_{0} \sin \omega t \\
& V_{O L R}=V_{0} \sin \omega t(\omega t+\pi / 2) \tag{-3}\\
& V_{O C R}=V_{0} \sin \omega t(\omega t-\pi / 2) \tag{4}
\end{align*}
$$

पोजर आरिए $V_{L}>V_{-}$

$$
\begin{aligned}
& V_{0} I_{C R}^{2}=V_{0 R}^{2}+\left(V_{L}-V_{C}\right)^{2} \\
& V_{O L C R}=\left(I_{0} R\right)^{2}+\left\{\left(I_{0} x_{L}\right)^{2}-\left(T_{0} x_{C}\right)^{2}\right\}^{2} \\
& V_{O L C R}^{2}=I_{0}^{2}\left\{R^{2}+\left(x_{L}-x_{C}\right)^{2}\right\} \\
& \frac{V_{O L R}}{I_{0}}=\sqrt{R^{2}+\left(x_{L}-x_{C}\right)^{2}}
\end{aligned}
$$

$$
z=\sqrt{R^{2}+\left(x_{L}-x_{C}\right)^{2}}
$$

जब $V_{L}>v_{c}$

Qn (20.7. (3.) गाउसका बियम ह विद्युत हैय मे स्थित लिदी बोद वार्पणिक
पृत्ठ से मुजरने कुल विद्ता उस पृष्ठ से सेबद्ध करल आवेश और कु। विद्यात पलक्त बराबर होता है।

$$
\phi=\phi \overrightarrow{\vec{e} \cdot d \vec{s}=\frac{\Sigma q}{\varepsilon}}
$$

अपरिमित समरूप आवेशित अवालक प्रा के कमवविध्या दैधैक्ष

हम एक अपरिमित समरूप आवेखरित अवालता पहिका $A B C D$ के कारण पविद्युत क्षैत्राज करना है। इसके पर पृष्हनय आवेश σ है। सके मध्य $ण$ से Q द्री पर दो अव्पाश लेते जोलि बिन्ट P पद O कोण बनाते है। A. के कारण विद्यु लैल्ता $d E_{1} q B$ दे कास पह है।
धम इसको घरको मे विभाषित करो है भो उध्वधिर व्यक परिमाण के समान परण्तु विपतित दिशा के करंण एक-दुसरे को विरसत कर दोर है। और त्रैपिष घटक जुडा जाते है।
धम एक ड क्षेष कल के जिलबाकार गुसीय पृष्ठ 27 बतबाई की

गाउसीय पहठ से सम्बक्ध पृर्णाय घनल

$$
\begin{aligned}
& v=\frac{q}{b} \\
& q=\sigma \times s
\end{aligned}
$$

गाउस के वियम से

$$
\begin{aligned}
& \oint_{s_{1}} \vec{E} \cdot \overrightarrow{d_{s}}+\oint_{s_{2}} \vec{E} \cdot \overrightarrow{s_{s}}+\oint_{s_{3}} \vec{E} \cdot \overrightarrow{d s}=\frac{\sum q}{c_{0}} \\
& s_{1} \text { व } s_{2} \text { के लिर } \theta=0^{\circ} \\
& s_{3} \text { के लिए } \theta=90^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \oint_{S_{1}} E d s \cos \theta+\oint_{s_{2}} E d s \cos \theta+\oint_{s_{3}} d s \cos \theta=\frac{5 q}{\theta_{0}} \\
& \oint \operatorname{dscos} 0+\oint_{s_{2}} \operatorname{Edscos} 0+\oint_{S_{3}} \operatorname{Edscos} 90=\frac{\frac{\Sigma q}{\epsilon_{0}}}{} \\
& \oint E d s+\oint E d s=\frac{\Sigma 2}{\epsilon_{0}} \\
& E \times S+E X_{S}=\frac{E Q}{E_{0}} \\
& \text { 2Es }=\frac{\sigma \times \%}{\epsilon_{0}} \\
& 2 E=\frac{\sigma_{0}}{\epsilon_{0}} \\
& E=\frac{\sigma}{2 \epsilon_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{q \cdot \frac{q}{\epsilon_{0}}-\frac{q_{0}}{\epsilon_{0}}}{\Rightarrow \frac{2 \mu c}{\epsilon_{0}}+\frac{1 \mu c}{\epsilon 0}} \\
& \frac{2 \mu c+1 \mu \mathrm{c}}{\epsilon_{0}} \\
& \Rightarrow \frac{3 \mu c}{\epsilon_{0}}
\end{aligned}
$$

Ans29.) अन. ऐमीयरकावियम: इस नियम के लिक् अनुपार निवात था वायु मे स्थिता किसी बेद पाश के वैखिये नुम्बमीय क्षेट का मान निर्वाल की सुबकीय पारगान्यका और उस पृष्ठ से गुषिले बाली कुल घाशाओं के बीचणाण्तीय योग के गुणनकल को के बराबर होता है।

$$
\oint \vec{B} \cdot \overrightarrow{d J}=\mu 0 \leq I
$$

(ब.)
अनना सम्बाई के सीधे घारावाहींचालक स्वुक्ष्वकीय क्षैत्रः-

हम एक अनान लेबाई का तीधा धारावाही चालक तार लोगे है। पिसमे I मान की स्थायी धारा प्रवाहित होरही है। माना कि $d l$ अल्याश के कारण हम एक माए से σ दूरी पर ध्थिा। P पर्चुम्बकीय ज्ञौत ज्ञात करना है। हम $र$ त्रिज्या का एक वात बनाते है।

$$
\begin{aligned}
& \text { ऐम्पीयट के नियान से- } \\
& \int_{0}^{2 \pi} \vec{B}^{2} \cdot d \vec{U}=105 I \\
& \oint_{0}^{2 \pi{ }^{2}} \oint_{B d l \cos \theta}=M_{0} I \\
& \theta=0^{\circ} \\
& \int_{0}^{2 \pi}{ }_{0}^{r} B d=M O I
\end{aligned}
$$

An(30.) (अ.) दर्णण समीकरण ह-

हम एकाबिब्बि AB है जिसका प्रतिषिति $A^{\prime} B^{\prime}$ स्थिति पर
खज्ता है। बत्ता है।
$\triangle A^{\prime} B^{\prime} P \cdot$ व APM मे

$$
\begin{aligned}
& \frac{A^{\prime} B^{\prime}}{m P}=\frac{A F}{F M} \\
& M P=A B \\
& \frac{A^{\prime} B^{\prime}}{A B}=\frac{A F}{F M}
\end{aligned}
$$

$$
\begin{aligned}
& \triangle A B m \bar{a} \triangle A^{\prime} B^{\prime} m \text { मे } \\
& \frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} m}{A M} \\
& \frac{A F}{F m}=\frac{A^{\prime} m}{A m}
\end{aligned}
$$

$$
A F=A M-F M
$$

$$
\begin{aligned}
& \frac{A m-f m}{f m}=\frac{A^{\prime} m}{A m} \\
& A_{m}=A_{9}^{\prime}, A^{\prime} m=-v, f m=\cdot f \\
& \frac{-\mu-(f)}{-f}=\frac{-v}{-4}
\end{aligned}
$$

uvf से भाग दले पर

$$
\frac{1}{f}=\frac{1}{v}+\frac{1}{4}
$$

(ब)

$$
\begin{aligned}
& R=10 \mathrm{~cm} \\
& f=? \\
& f=\frac{R}{2} \\
& f=\frac{10}{2}=5 \mathrm{~cm}
\end{aligned}
$$

